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ABSTRACT 

Let (f~,Y.,~) be a measure space and let P be an operator on L2(f~,Y.,p) 
with [IPI] < 1, Pf~ 0 a.e. whenever f >  0. If the subspace K is defined by 

K--{x I I [ p n x l l = l t P * n x l l : - I l x l l  , n--1,2,...) 
then K = L2 (f~,~l,/~), where [1 c E and on K the operator P is "essentially" 
a measure preserving transformation. Thus the eigenvalues of P of modulus 
one, form a group under multiplication. 

This last result was proved by Rota for finite # here finiteness is not 
assumed) and is a generalization of a theorem of Frobenius and Perron on 
positive matrices. 

Introduction. The purpose o f  this note is to generalize the results o f  [2].  In  [2] 

Ro ta  studies the eigenvalues o f  modulus  one o f  a contract ion P on L 1 (S, ~ , /0  

where # is a finite measure and P satisfies the following: 

a. Pf > 0 w h e n e v e r f  > 0. 

b. ess. sup. I Pf[ Z ess. sup. If["  

This problem is related to the Frobenius  Perron Theory.  For  bibl iography on 

the subject we refer to  [2].  

Our  generalization is two-fold:  

1. The measure # is no t  assumed to be finite. 

2. The opera tor  P is a contrac t ion on L2(S,E,#)  and is no t  assumed to be 

defined on LI(S, E, p). 
I f P h a s n o r m o n e i n  t and Lo~ then, by the Riesz Convexity Theorem it has 

n o r m  1 also over L2, thus 2 is weaker than R o t a ' s  assumption.  

We shall use the method  o f  the p r o o f  o f  Theorem 2.2 and Lemma 1.2 o f  [1].  

There the case #(S) < oo was studied. 

The results o f  [2]  are included in Theorems 1 and 3 o f  this note.  

Let (S, E, p) be a measure space with/~ > 0. 

LEMMA 1. Let L be a closed subspace of L2(S,~,,l~), which satisfies: 
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(1) l f f e  L then R e f E  L. 
(2) I f  f is real and f E L then Ifl eL. 
(3) I f  f >  0 a . e . , f E L ,  and c is a positive constant then min (f,c)E L. 
Let E' contain all the sets, in E, whose characteristic functions are in L; then 
(a) The sets in Z' form afield; 
(b) The characteristic functions of sets in ~,' span L. 

Proof. Let f ,  g be real valued functions in L. Then 

max( f ,g )  = k( l f -  gl + f +  g) e Z  

m i n ( f , g )  = ½ ( f + g - [ f - g l ) E L .  

I f  tr and z are in E', let I(a) and I(z) denote their characteristic functions. 
Then max (I(tr), I(z))EL and min (I(tr), I (r))eL or: a U z E E '  and ~ n z E X ' .  
In order to prove (b) it is enough to show that the only function in L orthogonal 
to Z' is the zero function. Now if r e  L is orthogonal to all functions I(tr),tr e E', 
then so is Ref .  Thus we may assume that . / i s  real. Let f+  = ½( lfl  + f ) E  L and let 
c be a positive constant. Then, by (3), m i n ( f + , c ) e L  and also f+  - m i n ( f + , c )  
g e L .  

Let ~b = c- i rain (f+, c). Then h, = e- 1 min (5 q~, g) e L. Now: 

h~(to) = 0 iff÷(~o) < c, since then g(og) = 0, 

while: 

he(og) = 1 if f+  > c + e.  Also, for every to, 0 ~ he(co) ~ 1. Hence he(co ) tends 
to the characteristic function of  {~o If+(o,) > c) as ~ --} 0, thus I{co]f+(~o) > c} E Z 
and is orthogonal to f ;  i.e., f < c a.e. for every c > 0. Therefore f+  = 0 a.e. 
Applying the same argument to - f  we g e t f  = 0. 

REMARK. If  p(f~)< OO then 1 EL 2 and Condition (3) is a consequence of  
Condition 2 and 

(3') 1 E L. 

DEFINITION 1. An operator P on L2(S,X,/ t )  is called an order preserving 
contraction (O.P.C.) provided: 

1. I f f e L 2  is real valued then so is Pf. 
2. I f 0  -<teL  2 a.e. then Pf>__ 0 a.e. 

3. I f f E L 2  is real valued and f <  ca.e. then P f <  c and P ' f <  c. 
4. [[P[[ __< 1. 

Note that the conditions (1) (2) and (4) are the same if we replace P by P*. 
Throughout  this note P will always be an O.P.C. 
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LEMMA 2. I f P f =  ei°fthen PIfl = [ f l .  

Proof. We will need the inequality 

IPFI<=PIFIa.e. 

Now if F is real this is immediate. Generally we have 

]RePF I < PlF l a . e .  since -4-ReF <=!FI. 

Also for every ;~ with [ ;~[ = 1 

(*) IRe,~PFI <= PI,~FI = P I F I  a.e. 

Thus if IPFI > PIFI o n  a se t  o f  positive measure there is a set tr 
measure, such that ifco~ tr then 

IPF[>(I+6)PIFI, l a r g P F -  ~kl < ~ 

where 6 > 0 e > 0 and ~ can be chosen arbitrarily small. But then 

Rel e-'~PFI > I PFI cos a > I FI contradicting (*). 

(This argument was suggested to us by Y. Katznelson). The proof  of the Lemma 
is now straightforward: 

llfll ~ >= II Plf111 [ISlI ~- (PISI,Ifl) >= I(ef,f)l = lifll ~ 

hence (PlSl, ISI~ = II Plsl II IlSll o~ Plsl =Isl- 

THEOREM 1. Let L = { f lPf  =f}  and let Z' contain all the sets tr in ~ such that 
I(a)¢ L. Then ~' is a field and its characteristic functions generate L, 

Proof. It is enough to verify Conditions (1), (2) and (3) of Lemma 1.The first 
condition is obviously satisfied. Now if lYl~ L then ISl ~ L by Lemma 2. Finally 
if 0 < f = Pf then 

P[min(f ,c)]  < Pf  =f, P[min(f,c)]  < c ; 

thus 

Hence 

P[min(f,c)] < min(f,c). 

of  positive 

P [ f -  min(f,c)'] = f -  P[min(f,c)] > f -  min (f,c) 

a n d f  - rain (f, c) => O. We must have equality a.e., since l] P ][ =< 1,thus rain (f, c) e J[. 

D E F , N , T I O N  2. K = {st II ~s l l - -  II P*"Sil : lifll, n >__ ~}. 
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Now [i Wf[[ = [[f[[ if and onlyif  p ,np~ f=f ,  and it is easy to check that P*nP~ 
is an O.P.C. Also l] P*~fi[ = ][f]] if and only if I~P*~f=f .  Thus K is generated by 
characteristic functions of the intersections of the corresponding subfields of Y~. 

DEFINITION 3. Let E 1 contain all the sets, a, such that I (a )e  K. 
By the above remarks %1 is a field and it generates K. 

THEOREM 2. The set K is a closed subspace of L2, invariant under P and P*. 
On K,  P is a unitary operator. I f  f _L K then 

weak lim F ' f  = weak lim P * f  = O. 

Also, if tr e E 1, then PI(a) = I(z), where z e % I. 

Proof. It is enough to prove the last statement since the rest is proved in 
Theorem 1.1 of [11. Let a e % 1 and PI(a) = f  then 0 __<f < 1. Let zl e E be such 
that if aie zl then 0 <f(al)  < 1, and let g = (1 - f ) . I ( z l ) .  Then 0 < g __< 1, and 
g+f<= 1. Thus P*(f+g)<__ 1 but P * f = I ( a ) ;  hence P*g(~o)=0 if ~oea or 
0 = ( I (a ) ,P*g)= (P*f ,P*g)= (f,g). Therefore, zl is a set of measure zero o r f  
is a characteristic function (necessarily of a set in El). 

LE~IA 3. I f  f , g are in K and are real valued, then P [min(f,g)] =min(Pf,  Pg). 
If, in addition, f is bounded then P(f. g) = PfPg.  

Proof. Since P is order preserving 

P[(min(f, g)] __< min(Pf, Pg),  

and a similar relation holds for P*. Thus P*[min(Pf, Pg)] < min(f,g).  Applying 
P to this inequality we get P [ m i n ( f , g ) ] < m i n ( P f ,  P g ) < P [ m i n ( f , g ) ] .  In 
particular i f f  and g are characteristic functions then 

P(fg) = p f  . Pg. 

The last part of the Lemma is proved by taking limits of sums of characteristic 
functions. 

THEOREM 3. I f  P f  = eiOf then 

P [  (sgnf)2 [f[]  = e2iO[(sgnf )2 If I]" 

Proof. It is well known that if P f  = ei~ " and I[ P II --< 1 then 

P ' f =  e-i° ((P*f, f)  = e-i° l lf l lb. 
Thus feK and, by Lemma 2, Plfl=lf l .  Let s:--s(<olls(<o)l Then 
P I, = I~ by Theorem 1 ; thus 

P [(sgnf) I~ if[ ] = PI, P f  = I~ e'°f = e'°I, (sgnf) If l. 
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On the other hand 

P [(sgnf) I, tfl ] = I, P [(sgnf)I,] P if[ = I~ If  [P(l, sgnf) 

or 

Therefore 

P(I,  sgnf) = I~ P(I 8 sgnf) = ei°I, sgnf.  

[March 

Applying Pi we get 

thus for P~* we have 

Proof. We will verify the three conditions of  Lemma 1: 

(1) If P l f  = P2f then  Pl(Re f )  = R e P l f  = Re P 2 f  = P2(Re f) .  
(2) I f f  is real valued and P f f  = PzJ then 

and 
Pt( f+)  = (Plf)+ = (P2/)+ = P2(f+) 

P i ( f - )  = (Pl f ) -  = (Pzf)-  = P2(f- ) .  

Since Plf+ and PJ_ are positive, their sum is P~f and (Ptf+, Pi f - )  = (f+ ,f_) = 0. 
(3) It will be enough to show that 

Pi[min (f,  c)] = min (Pif, c) 

f o r f  > 0 and c a positive constant. Now 

P, [ min(f,  c)] < min (P.,f,c) ; 

P*[  min (P,f, c)] < min (f, c). 

min (Ptf, c) £ [P. rain (f, c)]. 

Thus, in order to find whether two unitary order preserving operators are 
equal, it is enough to show that P l f  = P2f, whenever f is a function such that 
the functions I{to If(to) ~ A} generate L2(S, X, p). 

P[(sgnf) 2 I~ If] ] = If] P[(sgnf) I. ]2 _- f e 2,oI~ (sgnf) 2 

Let e ~ 0 ,  then I, If]-~ Ill ; hence 

P [ ( s g n : )  2 lYt] = e2'°(sgnf)21:J" 
Let us conclude with a uniqueness theorem. 

THEOREM 4. Let Pt and P2 be unitary order preserving operators. Then the 
subspace L = {J[ P l f  = P2f} is generated by the characteristic functions contained 
in it. 
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